

[image: Custom logo][image: Custom icon]
Spaces

Apps

Templates

Create

[image:]Developer Documentation

All contentSpace settings

Shortcuts

	dev toolsdev tools

Â This trigger is hidden

	api & toolsapi & tools

Â This trigger is hidden

	abantecart-srcabantecart-src

Â This trigger is hidden

	GitHub bug trackerGitHub bug tracker

Â This trigger is hidden

	<User Manuals><User Manuals>

Â This trigger is hidden

Content

	â€¢

AbaneCart Philosophy & Concepts

	â€¢

Architecture Overview

	â€¢

Files and directory structure

	Extensionâ€™s Developer Guide

	Advanced Extension

	â€¢

Extension Developer Tools

	â€¢

Languages

	â€¢

Resource Library

	â€¢

Templates Overview

	â€¢

Template development guide

	â€¢

Import/Export class

	Storefront API

	â€¢

Resource Library System

	â€¢

Translating Process

	â€¢

Tasks API

	â€¢

Data Models

	â€¢

AuditLog fix index mapping step by step

Developer DocumentationTasks API

Summarize

Tasks API

	Basara

Owned by Basara

Last updated: Oct 13, 2023
3 min read

Loading data...

AbanteCart core provides tasks API to to create and run tasks. The task can be used to break large or long processes into smaller steps that can be run with AJAX or with a backend script. Using task/steps you can show progress to the user and prevent the browser or connection from timing out in longer processes.

[image:]

Currently, tasks are used in 2 places of core AbanteCart.
Task is used in a backup and in bulk messaging. We use these places as example in this manual.
	Task core files:
core/lib/task_manager.php - Admin class ATaskManager
core/engine/task.php - Core class ATypeTask.

	Task related database tables:
[pefix]tasks - Main table for task information and status
[pefix]task_details - Task details table for settings
[pefix]task_steps - Task steps with settings for execution

Task is an organizational process to handle execution of created requests (steps). Execution of each step is passed to specified controller with provided settings in this given step.
Task can be execute right away or postponed to specified time.
Each task consists of steps that are organized in a sequence in which they are executed. Each task must have at least one step.
Now let's look into task creation and execution process and data with more details.

Task
To create a new task in the code, you need instantiate class ATaskManager in admin controller or model and run addTask() method with required parameters to create the task.

$tm = new ATaskManager();
		$task_id = $tm->addTask(

			array('name' => $task_name,

					'starter' => 1, //admin-side is starter

					'created_by' => $this->user->getId(), //get starter id

					'status' => 1, // schedule it!

					'start_time' => date('Y-m-d H:i:s', mktime(0,0,0, date('m'), date('d')+1, date('Y'))),

					'last_time_run' => '0000-00-00 00:00:00',

					'progress' => '0',

					'last_result' => '0',

					'run_interval' => '0',

					'max_execution_time' => '0'

)

);

Once task is creates with addTask() method, it returns new task ID. Using this task ID, tasks steps can be created with addStep() method.

In the task creation you can specify details for this task.

	
	
	Description of task parameters
	name
	->	Task name. This can be any name your.
	starter	->	Who will start the task Admin (1) or Storefront (0)
	created_by	->	User ID who creates this task
	status	->	Status of the task 0 - disabled, 1 - scheduled, 2 - active
	start_time	->	time to start task with Mysql date time format
	last_time_run	->	last time task ran
	progress	->	Percentage of task progress
	last_result	->	Status of last task ran 0 - success, 1 - failed, 2 - interrupted
	run_interval	->	interval in seconds since last run, 0 - without interval or run once
	max_execution_time	->	maximum execution time for this task before it gets terminated.

Steps
At least one step is required to be created for task to be executed. To create a step use addStep() method. Before creating a step, task should be already created and there should be task ID available.

$step_id = $tm->addStep(array(

				'task_id' => $task_id,

				'sort_order' => 1,

				'status' => 1,

				'last_time_run' => '0000-00-00 00:00:00',

				'last_result' => '0',

				'max_execution_time' => ceil($db_size/2794843)*4,

				'controller' => 'task/tool/backup/dumptables',

				'settings' => array(

								'table_list' => $data['table_list'],

								'sql_dump_mode'=> $data['sql_dump_mode'],

								'backup_name' => $backup_filename

)

));

	Following parameters need are specified during step creation:
	task_id	Unique task ID provided by addTask() method
	sort_order	Sequence of the step. This sequence starts from lower integer to higher
	status	Step status 0 - disabled, 1 - scheduled, 2 - active
	last_time_run	last time task ran
	last_result	Status of last task ran 0 - success, 1 - failed, 2 - interrupted
	max_execution_time	maximum execution time for this task before it gets terminated
	controller	Controller path to be executed in this step
	settings	Data values to be passed to controller at execution time

One special setting, that is important mentioning, is interrupt_on_step_fault. If given step has interrupt_on_step_fault set to true, task execution will stop if that step returns a failure.

After all needed steps are created task can be executed.
 Task execution is considered successful only if all steps in that task executed sucessfuly.

Step controller
Each step should have a controller that will be called during task and this step execution.
This is a basic response controller that is developed to perform some work required by this step.
In example of backup, "task/tool/backup/dumptables" controller performs task of dumping tables data. Each step is a process of damping data for one table.
Step response controller is expected to return appropriate Jason string with error is step has failed.

Task Execution
Task execution can be initiated 2 different ways.
1. Start from running task.php script from browser or from command line. Request to this script will put all scheduled tasks in the queue and will process them one by one.
/task.php file in github

2. Start task from UI with explicitly requesting task to start with button click or some other browser/user action. This is done using admin JavaScript function available in admin/view/default/javascript/general.js
public_html/admin/view/default/javascript/general.js file in github.

Example of button to run the task:

<button class="btn btn-primary task_run" data-run-task-url="<?php echo $form['build_task_url']?>" data-complete-task-url="<?php echo $form['complete_task_url']?>">

	<i class="fa fa-database"></i> <?php echo $form['backup_now']->text; ?>

</button>

	task_run	->	class that start last even is blinded to
	data-run-task-url	->	URL to the task process creation response controller
	data-complete-task-url	->	URL to the task/steps execution response controller that completes the task

Example of task creation and execution can be seen in store back up and bulk email See:

public_html/admin/controller/responses/tool/backup.php

public_html/admin/model/tool/backup.php

And

public_html/admin/controller/responses/sale/contact.php

public_html/admin/model/sale/contact.php

API Reference
ATaskManager class API methods in task_manager.php file
runTasks
runTask
addTask
updateTask
updateTaskDetails
addStep
updateStep
deleteTask
deleteStep
getTaskById
getTaskByName
getTaskSteps
getTotalTasks
getTasks

 {"serverDuration": 44, "requestCorrelationId": "bf9e800b74da41b69ecf82d4793f9665"}
